n,m = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
for i in range(512):
flag1 = 0
for ai in a:
flag2 = 0
for bi in b:
if (ai & bi)|i == i:
flag2 = 1
break
if flag2==0:
flag1 = 1
break
if flag1==0:
print(i)
break
// codex by freakingflux
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define fast() \
ios_base::sync_with_stdio(false); \
cin.tie(NULL); \
cout.tie(NULL)
#define loop(i, ini, n) for (ll i = ini; i < (ll)n; i++)
#define pool(i, n, last) for (ll i = (ll)n; i > last; i--)
#define all(x) x.begin(), x.end()
#define tc \
ll tt; \
cin >> tt; \
while (tt--)
#define inf INT_MAX
#define ninf INT_MIN
#define pb push_back
#define po pop_back
#define sz size()
#define ed end()
#define be begin()
#define mi(x) min_element(all(x))
#define mx(x) max_element(all(x))
#define am accumulate
#define rv(x) reverse(all(x))
#define fi first
#define se second
#define lb lower_bound
#define ub upper_bound
#define vl vector<ll>
#define pl pair<ll, ll>
#define vll vector<vector<ll>>
#define vp vector<pl>
#define ml map<ll, ll>
#define sl set<ll>
#define msl multiset<ll>
#define mml multimap<ll, ll>
#define pi 3.1415926536
#define read \
ll n; \
cin >> n; \
vl v(n); \
loop(i, 0, n) cin >> v[i];
ll mod = 1e9 + 7;
void rotate(vl &v, ll k)
{
ll n = v.sz;
k = k % n;
reverse(v.be, v.be + k);
reverse(v.be + k, v.ed);
rv(v);
}
bool is_prime(ll n)
{
// T.C sqrt(n)
if (n == 0 || n == 1)
return false;
for (ll i = 2; i * i <= n; i++)
{
if (n % i == 0)
return false;
}
return true;
}
vl prime_upto_n(ll n)
{
// T.C n*log(log(n))
vector<ll> isPrime(n + 1, 1), lp(n + 1, 0), hp(n + 1, 0);
isPrime[0] = isPrime[1] = 0;
for (ll i = 2; i <= n; i++)
{
if (isPrime[i])
{
lp[i] = hp[i] = i;
for (ll x = i * i; x <= n; x += i)
{
isPrime[x] = 0;
hp[x] = i;
if (lp[x] == 0)
lp[x] = i;
}
}
}
return isPrime;
}
sl allFactors(ll n)
{
// T.C sqrt(n)
sl factors;
for (ll i = 1; i * i <= n; i++)
{
if (n % i == 0)
{
factors.insert(i);
if (n / i != i)
factors.insert(n / i);
}
}
return factors;
}
ml allPrimefactors(ll n)
{
// T.C sqrt(n)
ml primeFactors;
for (ll i = 2; i * i <= n; i++)
{
while (n % i == 0)
{
primeFactors[i]++;
n /= i;
}
}
if (n > 1)
primeFactors[n]++;
return primeFactors;
}
pair<double, ll> sumCnt_of_divisors(ll n)
{
// T.C sqrt(n)
ll v = 1;
double sum = 1;
ml x = allPrimefactors(n);
for (auto x : x)
{
v *= (x.se + 1);
sum *= ((pow(x.fi, x.se + 1) - 1) / (x.fi - 1));
}
return {sum, v};
}
ll binpow(ll x, ll b)
{
// T.C log(n)
if (b == 0)
return 1;
ll ans = binpow(x, b / 2);
if (b % 2)
return ((ans % mod * ans % mod) % mod * x % mod) % mod;
else
return (ans % mod * ans % mod) % mod;
}
ll gcd(ll x, ll b)
{
// T.C log(min(x, b));
while (b)
{
x %= b;
swap(x, b);
}
return x;
}
void setIO(string s)
{
freopen((s + ".in").c_str(), "r", stdin);
freopen((s + ".out").c_str(), "w", stdout);
}
ll msb_finder(ll n)
{
ll k = __builtin_clzll(n);
return 1 << (64 - k);
}
bool check(ll a, ll b, ll ha, ll hb)
{
if (a == 0 && ha == 0)
return false;
if (ha == 0 && hb == 0)
return false;
if (b == 0 && hb == 0)
return false;
if (a == 0 && b == 0)
return false;
return true;
}
void solve()
{
ll n, m;
cin>>n>>m;
vl a(n);
loop(i,0,n) cin>>a[i];
set<ll>b;
while(m--){
ll x;
cin>>x;
b.insert(x);
}
ll ans=inf;
loop(i,0,(1<<9)){
ll cnt=0;
loop(j,0,n){
ll flag=0;
for(auto x:b){
if(((a[j]&x)|i)==i){
flag=1;
break;
}
}
if(!flag) break;
else cnt++;
}
if(cnt==n) ans=min(ans, i);
}
cout<<ans<<"\n";
}
int main()
{
// setIO("notlast");
fast();
//tc
{
solve();
}
}
1728C - Digital Logarithm | 1728D - Letter Picking |
792B - Counting-out Rhyme | 1195A - Drinks Choosing |
5D - Follow Traffic Rules | 1272A - Three Friends |
1632D - New Year Concert | 1400D - Zigzags |
716C - Plus and Square Root | 412A - Poster |
844B - Rectangles | 1591A - Life of a Flower |
1398C - Good Subarrays | 629A - Far Relative’s Birthday Cake |
1166A - Silent Classroom | 1000B - Light It Up |
218B - Airport | 1463B - Find The Array |
1538C - Number of Pairs | 621B - Wet Shark and Bishops |
476B - Dreamoon and WiFi | 152C - Pocket Book |
1681D - Required Length | 1725D - Deducing Sortability |
1501A - Alexey and Train | 721B - Passwords |
1263D - Secret Passwords | 1371B - Magical Calendar |
1726E - Almost Perfect | 1360C - Similar Pairs |